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Abstract

Through diffuse hydrothermal seafloor vents water flows out of the seafloor. Though the inflow-
ing water is transparent, it often has a different temperature or different dissolved substances
than the surrounding water. This leads to a difference in the refractive indices between the
various water types. This causes an optical effect, called Schlieren. Therefore, Schlieren are a
way to visually detect seafloor vents. We created a software for optical detection of Schlieren.
The software is based on the Horn-Schunck algorithm. It is capable of highlighting Schlieren in
a video and to process live stream video data. To provide test data for the detection software a
raytracer was developed, where rays get refracted based on a data from a Computational fluid
dynamics (CFD) simulation. The raytracer supports 2D- as well as 3D-simulation data. The
underlying CFD simulation software is Ansys. Additionally, an experiment was conducted in a
tank. Its footage was used to evaluate the simulation software through side by side comparison
and provide additional test data for the detection software. The detection software performed
well on the footage from the simulation and the experiment, as well as on real deep sea footage
with little noise and movement. Though there are still issues with the robustness of the results
and with camera movements.
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1 Introduction and Motivation

This paper is a result of the student project “Projekt Tiefsee”, a project worked on by computer
science students at the University of Bremen. The team working on “Projekt Tiefsee” consists
of 13 students and is supervised by two professors, Ralf Bachmayer and Gabriel Zachmann.

Low temperature diffuse flow contributes to approximately more than half of the heat emitted
around hydrothermal vents in the deep sea. However, as it is difficult to determine where
exactly diffuse flow is happening, research on those have been relatively sparse (Bemis, Lowell,
and Farough, 2012). Most research is concentrating on focused flow, because those are easy to
spot and measure. Our main goal is the optical detection and visualization of diffuse vent in
deep sea. This can aid further deep sea research and running missions with Remotely operated
underwater vehicles (ROVs), allowing researchers to inspect diffuse vents discovered by the
detection software.

To reach this goal, we formed three subgroups. The group “Experiment” has worked on recre-
ating deep sea vents in a controlled lab environment described in Section 3: Experimental
recreation. The group “Simulation” has worked on recreating deep sea vents digitally using
simulation tools and rendering software, see Section 4: Simulation. Finally, the group “Detek-
tion” has worked on creating a tool to analyze video material of deep sea exploration and a
detection algorithm. Video footage from previous missions as well as material created by the
other two subgroups was used during the development. Their work is explained in Section 5:
Optical detection.

2 Background

Hydrothermal vents

There are several types of hydrothermal vents. Black smokers are typically created by a con-
centrated flow of water up to 450 ◦C and transport sulfides and other minerals. When these
sulfides contact the surrounding cold water they precipitate, creating the signature black chim-
ney like structures. White smokers are still focused, yet they typically have lower temperatures
and consist of different materials (Schön, 1999).

In comparison, diffuse vents have lower flow rates and are distributed across much larger
areas. They can have temperatures between less than 1 ◦C and up to 80 ◦C. Mixing with the
surrounding water may also play a role in its lower temperatures (Bemis, Lowell, and Farough,
2012).
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Figure 1: Example of diffuse/hydrothermal seafloor vent and the caused Schliere, highlighted
by a red box (Center for Marine Environmental Sciences (MARUM), University of
Bremen, CC-BY 4.0)

Schlieren

Schlieren are an effect occurring because of a difference or gradient in the refractive index
of a transparent medium, the medium is optically inhomogeneous. This gradient has the
effect of refracting light rays. Therefore, Schlieren are visible by small distortions on pictures.
Commonly known examples of Schlieren are the flickering air above a hot street, fire or an
engine shown in Figure 2.
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Figure 2: NASA’s SR-71A aircraft taxiing on the ramp at NASA’s Dryden Flight Research
Center, Edwards, California, heat waves from its engines blurring the hangars in the
background (NASA Dryden Flight Research Center, 1995).

In the following Schlieren are regarded in the context of diffuse hydrothermal seafloor vent
because Schlieren are an optical indicator for these vents and hence can be used to detect
them. An example of a schliere caused by a diffuse/hydrothermal seafloor vent is shown in
Figure 1.

7
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3 Experimental recreation

3.1 Introduction

In this section the efforts to recreate hydrothermal vents and the typical Schlieren effect in an
experiment and creating videos with those are described. Everything reported in this section
was conducted by the subgroup “Experiment”, consisting of Moritz Bergenthal, Enna Gerhard,
Jan Lemme and Tjorven Schnack.

The ultimate goal was to create videos of optical effects occuring while artificially creating
Schlieren, which could then be used for testing and verification of the detection software as
well as testing and verification of the simulation software. This final realization is described in
Section 3.4: Recreating hydrothermal vents.

The first goal was to create the Schlieren effect, which itself occurs when fluids or gas with have
inhomogeneities in their refractive indices and is described in Section 2: Schlieren. Therefore,
the objective in the first test series was to find a simple and repeatable method to create differ-
ent refractive indices in water. Those tests are further described in Section 3.2: Visualization
of different refractive indices.

In parallel, a few different inflow systems for inserting fluids into an aquarium were developed
and tested. Those efforts are further described in Section 3.3: Creating diffuse water vents.

3.2 Visualization of different refractive indices

To achieve different refractive indices the decision to not necessarily insert water with different
properties than the water in an aquarium was made. In this test series, different solid, but
transparent materials were used as well as warm and later on salt water. The test series can be
seen as a prototype for later series. Before conducting large scale experiments, it was decided
to evaluate different techniques and approaches in a smaller test environment.

3.2.1 Test setups

Instead of using a large tank, the first two test series were conducted inside of a smaller
aquarium. The main advantages include a much easier access with being able to reach the
ground, requiring less water. The aquarium used in the first and second test series had the
dimensions 40 cm × 24 cm. A larger container with the dimensions 120 cm × 100 cm × 76 cm
was used for the third test series and the final experiment. This improved results drastically as
it reduced side effects such as affecting circulation inside of the container, and an influx of salt
water or different temperatures would not be as noticeable. Overall, an even larger tank might
result in further improvements, however the results in a larger tank were already satisfying.

We evaluated two different background images during the first two test series, one with a
checkerboard and one with a photograph of gravel to create a more natural effect. During the

8
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third series, we explored plain backgrounds of black and gray color. We used a grid of black
lines on a white background for the fourth series to create higher contrast.

Video capturing was performed by a GoPro Hero 5 and GoPro Hero 6 camera in 1080p with
60 Frames per Second (FPS) for the first and fourth test series respectively. In the second,
it was substituted with the camera of a Motorola Moto G6. It is a good idea to have an
alternative camera system to be able to account for the equipment suddenly being unavailable.
For the third test series, we evaluated the camera of a BlueROV. This was insufficient because
it created too many artifacts and was not focused well. Finally, we co-recorded the third and
fourth experiment with a Rollei 400 in 1080p with 30 FPS.

Starting with the second experiment, we covered the aquarium to reduce light from the room
as well as noise and reflections which improved video quality significantly.

We tried using a green cross line laser during the third test series, but it did not have a visible
effect on the appearance of the Schlieren.

3.2.2 Different Materials

We explored different materials during the first three test series. The following is an account
on the process of selecting the most prospective candidates.

A wide selection of prospective materials and shapes of objects that could be used was evaluated
during the first test series. The result was a set of seven candidates to create different refractive
indices. Polyurethane (PU) was used in a 3D printer to create a drop, wave and lens.

9
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(a) Empty aquarium for com-
parison

(b) PU drop (c) PU Wave

(d) PU Lens (e) Empty bottle (f) Filled bottle

(g) Water, 50 ◦C (h) Oil

Figure 3: Results of the first test series
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ID Material Outcome Figure
1.0 None Empty aquarium for comparison Figure 3 (a)
1.1 PU Drop Fairly opaque, some lens effect Figure 3 (b)
1.2 PU Wave Shadow appearing behind the sample Figure 3 (c)
1.3 PU Lens Nearly invisible, lens effect Figure 3 (d)
1.4 Empty Bottle Lens effect Figure 3 (e)
1.5 Filled Bottle Lens effect Figure 3 (f)
1.6 Water 50 ◦C Diffuse distortion and flickering Figure 3 (g)
1.7 Oil Sticking to the tube, rising quickly Figure 3 (h)

Table 1: Results of the first test series

Hot water clearly showed the best results with realistic diffuse distortions and flickering. We
were not able to create realistic movement with probes out of Polyurethane and the type and
shape of distortion was very different. Oil did not lead to well visible effects, especially as the
bubbles surfaced very quickly. Furthermore, it was much harder to handle and to clean up.

With hot water having been the best medium of the first test series by far, we decided to focus
on different types of water inflow for the second series. This included further tests with hot
water, cold water created by ice as well as salt water.

The salt water was created using completely dissolved salt. This only consisted of regular
cooking salt (NaCl).

11
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(a) Empty aquarium for
comparison

(b) Empty aquarium with a
gravel background, for
comparison

(c) Warm water 48 ◦C (with
thermometer)

(d) Warm water 60 ◦C fo-
cused from below

(e) Ice Cube (f) Ice Cubes

(g) Salt water, 240 ‰ (h) Salt water, 240 ‰,
gravel background

(i) Salt water, 38 ‰

(j) Salt water, 19 ‰

Figure 4: Results of the second test series

12



3.2 VISUALIZATION OF DIFFERENT REFRACTIVE INDICES Project “Tiefsee”

ID Material Outcome Image
2.0 None Empty aquarium for comparison Figures 4 (a) and 4 (b)
2.1 Water 48 ◦C Minor Schlieren visible Figure 4 (c)
2.2 Water 60 ◦C Schlieren clearly visible Figure 4 (d)
2.3 Ice cube No distortions visible Figure 4 (e)
2.4 Ice cubes No distortions visible Figure 4 (f)
2.5 Salt water 240 ‰ High visibility, somewhat diffuse Figures 4 (g) and 4 (h)
2.6 Salt water 38 ‰ More diffuse than 2.4 Figure 4 (i)
2.7 Salt water 19 ‰ Less visible, more diffuse than 2.5 Figure 4 (j)

Table 2: Results of the second test series

The second test series introduced salt water which offered good results. Salt water should be
inserted with increasing salinity so there is less floating around at the bottom during consecutive
tests. Hot water also produced some realistic Schlieren. Ice cubes were not feasible as they
took too long to dissolve.

13
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(a) Empty tank for comparison (b) Empty tank with a gray
background, for compari-
son

(c) Warm water

(d) Salt water, 10 ‰ (e) Salt water, 20 ‰ (f) Salt water, 40 ‰, gravel
background

(g) Tinted water

Figure 5: Results of the third test series
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ID Material Outcome Image
3.0 None Empty tank for comparison Figures 5 (a) and 5 (b)
3.1 Warm water Air caused distortions Figure 5 (c)
3.2 Salt water 10 ‰ Barely visible Figure 5 (d)
3.3 Salt water 20 ‰ Partially visible Figure 5 (e)
3.4 Salt water 40 ‰ Some Schlieren visible besides

the background
Figure 5 (f)

3.5 Tinted Water Visible outflow of colored fluids Figure 5 (g)

Table 3: Results of the third test series

The third test series mainly faced problems with the test setup. On the one hand the pump
for the inflow system was very difficult to operate and on the other hand the camera system
produced low quality and noisy videos. Therefore the results of this test series were not good
and unusable. The only visible results was from water tinted with food coloring, though it was
not realistic.

Overall salt and warm water have produced the best results throughout all test series.

3.3 Creating diffuse water vents

To insert water into an aquarium an inflow system was needed. These systems should produce
a diffuse water vent that is as close as possible to actual hydrothermal vents in the deep sea.

An inflow system consists of two parts, the supply line, which has to apply water pressure,
and the actual inlet were the fluid enters the aquarium. For applying pressure, two different
electrical pumps as well as just potential energy though height difference were evaluated.

For the first experiment we chose a shower head and pumped hot water out of a bottle using
height differences. (Figure 6 (a))

In the second experiment we arranged a meandering tube with regular drilled holes. (Fig-
ure 6 (b))

Due to insufficient water output through the small holes we switched to let the water flow out
of the ending of the hose. (Figure 6 (c))

Based on this experience, we used a bigger hose with bigger holes lined up on the top in the
third test series. (Figure 6 (d))

For the next and final experiment we printed an inlet with a 3D printer, which is described in
the next section. This was the result the experience gained in the first three test series

15
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(a) Shower head as an initial test candidate,
first test series

(b) Small meandering tube to allow for a more
precise outflow, second test series

(c) Tube ending accounting for increased water
output, second test series

(d) Bigger tube with larger holes to sustain in-
creased water output, third test series

Figure 6: Different types of inlets

3.3.1 3D printed inlet

For the final experiment, we decided to create an inlet distributing water instead of a single line
over a larger area. This custom inlet was created out of Polylactide (PLA) using a 3D printer.
To reduce the effort of recreating this by the subgroup “Simulation”, we decided to create a
grid of 9 by 9 holes with a distance of 1 cm and a diameter of 2 mm. These were placed on
a cuboid with the dimensions 10 cm × 10 cm × 2 cm. The top-layer has been printed separate,
with the holes drilled in afterwards. The top-layer was glued to the cube, and a separate hole
was drilled at one side to glue a hose connector for the inflow system tube in place.

16
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Figure 7: 3D printed inlet used in the final test

3.3.2 Inflow system

In the end, we decided to build our own gravity based inflow system as pumps were not
producing a constant enough water stream and were harder to control. A wooden tower with a
height of about 1.5 m forms the carrier for a canister. This canister lays with its outlet directed
to the floor on top of the tower and held in place with 4 pieces of rigid tube, which are screwed
to the sides of the tower. The rear top of the canister was cut open to refill water and replace
water flowing out with air.

The outlet of the canister and the flow regulation ball valve are connected by a short piece
of rigid tube which is hold in place by hose clamps. We connected a tube with a diameter of
8 mm and a length of about 2.5 m to the outlet of the ball valve, again hold in place by a hose
clamp. This tube can be connected to the 3D printed inlet using its hose connector.

17
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Figure 8: Wood tower and canister of the inflow system for the final test series

18
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3.4 Recreating hydrothermal vents

With the lessons learned and the experience gained in the previous tests we conducted this
final large scale experiment. It is the core experiment and based on its results we made the
following evaluations.

3.4.1 Setup

We created the setup as depicted in Figure 9: Experiment setup based on the experiences
gathered in the first three test series. The main change compared to the previous test series
included the larger 3D printed inlet (Section 3.3.1: 3D printed inlet) and the use of the gravity
based wooden tower inflow system (b in Figure 9; Section 3.3.2: Inflow system).

The inlet was placed inside a tank with the dimensions 120 cm × 100 cm × 76 cm. It was filled
with tap water (d = 38cm).

We used a board with a 2 cm grid of 3 mm thick lines. Light was provided by a Suptig LED
light (y) with about 500 lm to illuminate the inside of the tank. In order to be on the safe side,
we used two cameras. A GoPro Hero 6 (x) was placed in the center and a Rollei 400 (x’) was
placed at an angle to capture the vents.

The 3D printed inlet (a) was placed at a distance of s = 20cm from the background and 3.7 cm
above the ground. The camera of the GoPro was h = 7cm above the ground. The light (y)
was mounted directly on top of it, at a height of l = 17cm. The Rollei was inside of a case,
that lifted it about h′ = 2cm above the ground. After going through every test at a camera to
inlet distance of c = 75cm once, where repeated the tests with a distance of c = 45cm.

19
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s c

d

h l
h′c′

a

b

x

yx’

a = 3D printed inlet
b = Tower inflow system
x = GoPro Hero 6
y = Suptig LED light
x’ = Rollei 400 (angled)

d = 38cm
s = 20cm
h = 7cm
l = 17cm
h′ = 2cm

c = 45cm, 75cm
c′ ≈ c

Total tank dimensions:
120 cm × 100 cm × 76 cm

Figure 9: Experiment setup

3.4.2 Execution

We conducted four different tests with the following properties:

Name Properties
Warm water Maximum temperature at the inlet

was50 ◦C.
Salt water 1 Salinity of 10 ‰. 17 ◦C.
Salt water 2 Salinity of 20 ‰. 17 ◦C.
Salt water 3 Salinity of 40 ‰. 17 ◦C.

Table 4: Listing of tests and properties

The initial water temperature was 16.3 ◦C

Each test was executed twice. The first time with cameras further away, the second time
with closer cameras, with five minutes between two tests to minimize side effects between the
tests.

20
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3.4.3 Results

(a) Warm water, direct (b) Warm water, angled

(c) Salt water 1, direct (d) Salt water 1, angled

(e) Salt water 2, direct (f) Salt water 2, angled

(g) Salt water 3, direct (h) Salt water 3, angled

Figure 10: Snapshots of different videos created in the core experiment. Each left and right
image origin from the same test and same time stamp. The left images was taken
with the GoPro Hero 6, the right image was taken with the Rollei 400. Due to
different white balance possibilities a heavy bluish cast can be seen on the images
from the latter. 22
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Figure 11: Constant distortion at the end of the warm water test

Warm water In the result video the Schlieren effect is clearly visible, shown in Figures 10 (a)
and 10 (b). The inflowing water heads to the surface. The variety of intensities of the effect
through the duration of this test is noticeable. When the inflow is strong the effect is visible not
just above the inflow but up to the surface. Towards the end the inflow decreases, accordingly
the Schlieren effect gets more subtle and becomes barely visible. There is also a point where a
distortion is still visible just above the inlet, but there is no high frequently flickering visible,
and the distortion does not change much. It looks like a still image, as in Figure 11.

After the test the temperature in the tank ranged from 16.6 ◦C to 17.4 ◦C. The further away
from the inlet and the lower to the ground the colder the temperature.

Salt water 1 The Schlieren effect is also clearly visible, shown in Figures 10 (c) and 10 (d).
In comparison to the warm water the inflowing water appears a little more opaque. Another
noticeable observation is that initially the water heads to the surface, but the water stops
rising and falls off to the sides, forming a plume. Then the plume shrinks to a consistent level.
When the inflow stops, the whole plume falls off, spreading out on the ground besides the inlet.
There, Schlieren are still visible even after the inflow stopped. In the five minutes between the
tests this effect dissolved.

Salt water 2 The results Figures 10 (e) and 10 (f) of the second salt water test match the
results of the first salt water test. As expected, the higher salinity increases the observed
effects. The inflowing water is more opaque, and the plume shrinks to a smaller level. It is
possible that both can be ascribed to the higher density of the more salted water.

Salt water 3 This test result Figures 10 (g) and 10 (h) also correlates with the two previous
salt water tests. The inflowing water is even more opaque, and the consistent plume level is
just above the inlet.

A noticeable observation in the result videos is a clear crisp boundary between the salt water
plume and the surrounding water. Based on that, you can assume that the salt water does not
mix immediately with the surrounding water. This effect is probably also present in the both
previous salt water tests but not as clearly visible due to the lower salinity.
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The individual tests have a flow characteristic in common. The effects are more intensive
towards the sides of the inlet. This is well visible in Figure 10 (g). We assume that this
corresponds to turbulences occurring when the inflow “jet” is inserted into still water. Though
it is only possible to give an average value for the inlet velocity at each hole. By knowing the
total inflow area A and the amount of inflowing water per time f it is possible to calculate the
average inlet velocity v.

On the surface of the inlet are 81 holes, each with 2 mm diameter, in total 2 L = 2000 cm3

inflowing fluid and the duration of the inflow was 40 seconds.

f = 2000 cm3

40 s = 50 cm3

s (1)

A = 81 · π · 2 mm2

4 = 254, 502 mm2 = 2, 54502 cm2 (2)

v = f

A
=

50 cm3

s
2, 54502 cm2 = 19, 646 cm

s = 0, 19646 m
s (3)

3.5 Connecting experiments with simulation and detection

3.5.1 Detection

After experimentally creating videos of hydrothermal vents, those videos were given to the
subgroup “Detektion” for evaluation and afterwards they were compared with a frame from
the original video which was analyzed. The first results we got were from late February
2020. While the subgroup was still working on the algorithm, those results were not final.
The results of the algorithm are bare point clouds and there is no distinction between image
segments with or without vents, like drawn bounding boxes on an image. Apart from those
still missing features, the point density is clearly higher in the areas of the outflow. Regarding
this, the algorithm from late February 2020 in total can be considered as “working”.

As we are approaching the end of this project, we can now get some “final” analyzed videos
from the subgroup “Detektion”. One analyzed video can be seen in different processing steps
and with the final result in Figure 38.

3.5.2 Comparison to simulation

The simulation software by the subgroup “Simulation” produces Schlieren videos. To test
and verify the simulation software, its results will be compared to results of the experiment.
Therefore, a simulation case was created that took over properties from the core experiment.
The case is precisely described in the section Section 4.4.3: Recreating the experiment.

Of course, the simulation cannot depict the experiment is every aspect, for instance the inlet
velocity. The simulation used an average inlet velocity modulated with a random value for every
inlet hole. This is different in the experiment, as stated in Section 3.4.3: Results. Another
important difference is the inflowing medium. The simulation achieved a difference in the
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refractive indices for the Schlieren by a difference in temperature. In the experiment, on
the other hand, we produced the Schlieren not only with warmer water but also with salted
water. Naturally, the simulation results will only be compared to the warm water experiment.
Nevertheless, the comparison allows a qualitative evaluation for the simulation software, to
determine how realistic the simulation results are.

Figure 12: Experiment result

Figure 13: Simulation result

An obvious difference is that the simulation is much cleaner, meaning less noise and other
factors like the fish eye effect from the experiment result. Also, the simulations do not have
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an inlet structure and hose. The background in the simulation is lit perfectly even, while in
the experiment the light intensity decreases towards the sides.

Regarding the Schlieren effect the simulation has two aspects. On a larger scale the simulation
has distortions that clearly change the course of the background grid lines, especially the
horizontal lines in the middle of the upper half. This is so significant the top grid line goes out
of scope and reenters. This effect is not observable in the experiment. The other aspect is a
small scale effect at the grid lines. The lines flicker and change slightly very similar to the high
frequency flickering effect which is present in the experiment. But these small scale distortions
of the lines are discrete, rather than continuous. This is probably due to the background which
is pixel graphic. Therefore, the distortions can only occur in pixel quantities too. Interestingly
these small distortion do not occur at the very middle vertical line.

Despite the mentioned differences to the experiment results the simulation produced a promis-
ing result with visible Schlieren effects.

3.6 Conclusion

3.6.1 Comparison to real seafloor vents

Our experiment reproduced Schlieren only under very specific conditions and circumstances.
Hence, it did not take in to account every characteristic of a real seafloor vent. The following
will describe which characteristics of real vents were not regarded by this experiment.

The first deviation involves physical properties of the inflow. The inlet properties in this
experiment were rather constant. The velocity and temperature of the inflowing water were
steady. Furthermore, the inlet remained unchanged throughout a test. Also, the inflowing
water was either warm or had one of three different salinities. Though in reality, diffuse
hydrothermal seafloor vents obviously do not have well-defined properties and are most likely
a combination of those. Compounds of the inflowing water vary from just added salt (NaCl)
and the temperatures are different at any geographic location where seafloor vents occur. A
real inlet is not definite, like a 3D printed symmetric 9 × 9 hole grid inlet, and it cannot be
assumed that the inflow velocity is steady. Real seafloor vent properties are very irregular and
inconsistent.

Another big difference to real seafloor vents are the environmental conditions. The experi-
ment took place in a much smaller tank with way less water volume compared to the sea.
Therefore, the proportion of the inflowing water to the total amount of water is higher and
the pressure conditions are different. Other factors that were not regarded are water currents
and disturbances of moving object such as animals. A plane black and white grid was used as
a background, while in reality a broad variety of natural backgrounds occur.

Regarding the video capturing, the experiment produced results with low noise. This is not
guaranteed in real world applications. The distance from the camera to the vent is probably
higher and likely to change during capturing. Movements of the camera vehicle influence the
resulting video as well. Due to the limitations of the experiment, a sufficient illumination of
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the scene was possible but in reality longer distances, bigger areas and back-scatter worsen the
illumination and therefore also the visibility.

So on one hand our experiment was limited by physical characteristics, on the other hand real
world Schlieren are much more diverse and occur in different circumstances. Hence we were
not able to take every characteristic into account.

3.6.2 Future Work

While the resulting videos from Section 3.4: Recreating hydrothermal vents differ from real
vents as described above, they are still by far the best we had throughout all of our test series,
both in terms of video quality and similarity to real vents. With this in mind, there are no
further plans on continuing our tests, besides a demonstration to represent our project to the
public.

Nonetheless, there is the possibility of a subsequent project, where our work might be continued.
For this, quite a few improvements come to mind.

First of all, the inlet properties could be varied more, for example by controlling and varying
the flow volume and intensity. This could be done either by hand or by an actuated flow control
valve, which can constantly adjust the flow volume. A self-sucking pump could also be helpful
for controlling inflow pressure and volume. The properties of the inflowing water itself would
have to be modified. While in our tests only distinct different salinities and temperatures were
used, in a future test those could be altered during one single inflow in order to better simulate
real deep sea conditions.

Next up would be an improvement of the inlet, which right now is 3D printed and afterwards
got drilled for inlet holes. While this can be reproduced relatively easy in the simulation, it is
not similar to real vents. In order to get the inlet more natural, the inlet structure has to be
modified. An idea to resolve this issue would be to still use the 3D printed inlet, but reducing
the thickness of the surface heavily before printing, creating just a mesh of PLA. This could
result in a more diffuse and therefore more realistic inflow and inlet.

Another important aspect is the realism of the surrounding. Moving to a bigger tank or pool
and putting the camera at an angle facing downwards, one could achieve an image without
visible tank walls. Going even further, the ground could be “aquascaped” to look just like a
field of hydrothermal vents in the deep sea.

In our test series, the position of the camera and thereby its distance to the inflow was consistent
throughout the tests. Also, the camera models used in the tests are not proper for the use
in deep sea, work-class ROVs sometimes do not even have HD-video enabled cameras. When
working with an ROV, conditions like water currents and ROV thrust are changing constantly,
it is impossible to achieve a constant camera position. In order to recreate more realistic
videos, this has to be taken in account and one could either use an ROV or some other way of
moving the camera, e.g. by hand on a stick, to get more natural results.
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Using an ROV would also imply using an ROV camera, being more realistic and producing
more realistic videos in comparison with those taken in the deep sea. One has to keep in mind,
that the idea of a laboratory experiment is to isolate the occurring optical effect and therefore
the content of the last paragraph was intentionally not taken into account in our experiments
and might also not taken into account in future work.

28



4.1 INTRODUCTION Project “Tiefsee”

4 Simulation

4.1 Introduction

A main part of this project is to provide simulations of diffuse seafloor vents which may be
used as input data for the detection software. Moreover, they can be compared to the results of
the experiments that are done for the same reason. That enables the project group to validate
their results by comparing simulation and experimental results and analyzing both using the
detection software.

The idea is to use a CFD-Tool to simulate seafloor vent objects based on time steps and then
use a raytracer to render an image of those objects for every time step simulated. Successively
rendered, the output images can be converted into a video file showing a continuous simulation
of seafloor vents.

4.2 Background

The first step to be taken at the very beginning was to decide whether to use an existing
ray tracing software or to build our own raytracer. Blender for example, an open source
software, includes features like smoke and fluid simulation. Since no one of the simulation
group has worked with Blender or a similar software before, much time would have been spent
to understand the functionalities of possible tools and to decide which one would be the best
to work with. Also, it could have been difficult to add new functions that might be needed in
the course of the project. Due to these facts it was decided to build a new raytracer.

Another question we discussed during the implementation of the basic raytracer was how to
simulate the movement of the inflowing water of a vent later on and how to calculate the
corresponding refractive indices so that our output simulation will be realistic. One possibility
was to use a CFD tool, with which the inflowing water of a vent can be simulated. The output
of such simulations would have been a set of physical data for each cell in a custom mesh
for each timestep of the simulation. We decided to use such a tool and to import the output
information into our raytracer. The exact tools we used and the way we imported and worked
with the CFD data are described in section 4.4.

4.3 Raytracer

In the following subsections the construction and the functionalities of the basic raytracer
are explained. Further classes that were implemented to import CFD data and to build vent
objects are described in section 4.5.
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4.3.1 Construction

The construction of our raytracer is based on a tutorial by Dmitry V. Sokolov published on
GitHub (Sokolov, 2019). Another source we used to understand the ray tracing process is a
raytracing tutorial by Scratchapixel Scratchapixel, 2016. We further devided the construction
into model and controller. That made it easier to split up the different tasks while programming
and it ensured the clarity of the code.

The main element of the model is the class Scene. It determines all elements of a rendered
image. A scene is a three-dimensional space containing various scene objects of the class
SceneObject, light objects of the class Light and one object of the class Camera, which defines
the section and the perspective of the image to be rendered.

Since SceneObject is an abstract class, there are several classes inheriting from it that define
the exact type of a scene object. They have certain attributes to describe their position and
their size. To describe the material properties of a scene object, a further class named Material
is used. The following diagram shows the classes that are available to create a certain scene
object.
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Figure 14: class diagram of the raytracer model

The controller part contains the logic of the raytracer. Its main element is the class Render.
Its public function render() renders a given scene and saves the output image as a Portable
pixmap format (PPM)-file. This is done by casting rays from the camera position to each point
within the width and the height of the image. To enable the whole rendering process, several
other functions are provided by further controller classes.

The class SceneController provides the function sceneIntersect() with the possibility to check
if a given ray intersects with an object of a given scene and stores information about the hit
point. Furthermore, SceneController provides a function that computes the reflection of a
given ray at a certain hit point.
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There are also object controller classes for each type of scene objects. They all contain equal
functions with different implementations depending on the object type. For clarity, a class
named SceneObjectController provides eponymous functions that distinguish between the ob-
ject types and then call the matching function of the right object controller class. Accordingly,
SceneObjectController is the interface between Render and SceneController and the specific
object controller classes.

One of the provided functions is rayIntersect(), which checks if a given object is hit by a
given ray. It is called by the previously mentioned function sceneIntersect(). Further functions
enable to get the normal vector and the material of a given object at a certain point and to
compute the refraction of a given ray at an object.

Figure 15: abstract sequence diagram of the raytracer controller

Normally, we rather want to create a sequence of pictures than just a single image. In order
to maintain this, there are two options provided. The controller-class for video processing,
called VideoController, provides the possibility to simulate camera movement in a scene. Its
only function renderVideo() takes an amount of timesteps which should be rendered, also 3
functions for camera translations in x, z and y direction. Furthermore, it takes the scene to
be rendered and starts the whole render-process for each timestep. A second option is to use
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a provided loop in the main class to render a sequence of scenes that distinguish from each
other so that a moving scene can be created.

(a) Beginnings (b) Completed

Figure 16: Raytracing Pictures - Step by step development of our Raytracer

The implementation of the named functions and how they exactly enable the rendering process
is further described in section 4.3.2.
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4.3.2 Functionality

In order to render an image, it is necessary to create a scene first. The scene contains all scene
objects to be rendered, as well as the camera and the lights placed in its three-dimensional
space. As mentioned before, the top level function to handle the rendering process is called
render(). As its only argument, it takes a scene. To make understandable how things work,
we created some Pseudo-Code.

Algorithm 1 void render (scene)
RGB pixelbuffer [width*height];
for all pixel : pixelbuffer do
pixel = castRay(origin, direction, scene);

end for

As the idea is to shoot a ray from the camera through every pixel of a grid determined by the
image width and height the camera was given, we need a way to represent this grid. That can
be done by a pixelbuffer with width*height pixel entries. For each of these a ray gets cast with
the cameras position as origin and direction towards the pixel position. The castRay()-function
takes all these parameters for further calculations.

Often there is no object which a ray intersects with. In that case, the program will return
a defined background colour. The sceneIntersect()-method handles if the ray intersects with
any object, as explained in the next snippet of code. Assumimg sceneIntersect() indicates an
intersection, the colour which gets returned by castRay() will be the colour of the intersected
object, calculated with its refractive and reflective index, as well as the light intensity.
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Algorithm 2 RGB castRay (origin, direction, scene)
backgroundcolour = blue;
sceneobject = null;
hitpoint = null;
normvector = null;
if (!sceneIntersect (origin, direction, scene, hitpoint, normvector, sceneobject)) then

return backgroundcolour;
end if
material = sceneobject.Material();
refractdirection = calculateRefractionRay(hitpoint, direction, normvector, material);
refractioncolour = castRay(hitpoint, refractDirection, scene);
reflectdirection = calculateReflectionRay(direction, normvector);
reflectioncolour = castRay(hitpoint, reflectdirection, scene);
diffuseLight, specularLight = null;
for all light : scene.Lights() do
hp, nv, so = null;
lightdirection = light.Position() - hitpoint;
if (!sceneIntersect(hitpoint, lightdirection, scene, hp, nv, so) then
diffuseLight += light.Intensity() * lightdirection * normvector;
specularLight += powerof(calculateReflectionRay(lightdirection, normvec-
tor),material.SpecularExponent()*light.Intensity();

end if
end for
outputcolour = sceneobject.getRGB() * diffuseLight * material.getAlbedo(diffuse) + specu-
larLight * material.getAlbedo(specular) + refractioncolour * material.getAlbedo(refraction)
+ reflectioncolour * material.getAlbedo(reflection);
return outputcolour;
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Algorithm 3 bool sceneIntersect (origin, direction, scene, sceneobject)
distance = maximum;
compDistance;
for all current : scene.getSceneObjects() do

if (current.rayIntersect(origin, direction, scene, sceneobject, compDistance) and compDis-
tance < distance) then
sceneobject = current;
distance = compDistance;

end if
end for
return distance < 1000;

The sceneIntersect()-function iterates through all scene objects the scene contains and calls
their rayIntersect()-function. Its procedure is explained more detailed in the next snippet. In
case a rayIntersect()-function indicates an intersection, the sceneObject-variable created in the
castRay()-function gets overwritten. Through all iterations of the scene objects, the one which
is closest to the camera gets returned. The final return sets the distance of scene objects to
the camera can be a maximum of 1000 in internal representation units.

Algorithm 4 bool rayIntersect (origin, direction, sceneobject, compDistance)
if (intersectionBetweenRayAndObject(origin, direction, sceneobject) == true) then
compDistance = calculateDistanceFromOriginToHitpointWithObject(origin, direction,
sceneobject);
return true;

end if
return false;

Calculating if there is an intersection between a ray and a scene oject is indivual, depending
on the type of the SceneObject. If it turns out that there is an intersection, the comparison
distance variable gets overwritten and handled in the sceneIntersect()-method.
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Figure 17: Diagram of basic raytracing functionality where rays are represented by dotted lines

The basic mode of operation of the raytracer can be explained with a simple diagram as
seen in Figure 17. For each pixel in the pixelgrid a ray gets cast and the closest intersection
calculated and the resulting color saved in the pixelgrid. If a ray intersects with an object that
has refractive properties for example an Ansys Object, the ray gets refracted and a recursive
function call is made. The resulting pixel in the pixelgrid is a combination of the color of the
initial intersection, the color from refraction and also reflection (not shown in the diagram).

4.3.3 First ideas for Schlieren Simulation

While working at the basic functionality of the raytracer, several ideas came up of how to
simulate Schlieren of diffuse seafloor vents. This was before we started working with CFD
tools. So, these ideas are more of a way trying to approximate refraction effects that look like
Schlieren, but are not physically accurate.

First attempt was to shape a seafloor vent by many little triangles with different indices of
refraction. This approach is similar to one of the first experiments by the experiment group
of dipping several PU-shapes in water, but in this case, we have different refractive indices to
get a more Schlieren-like looking result. Up to this point of time a scene object was only able
to return the same material for each ray intersection with this object and due to the results of
this first attempt we assume to get better results if the material which is returned depends on
the point of the intersection.

Therefore, we made a second attempt with variable refractive indices. We tried to overlay the
background by triangles in shape of seafloor vents. The refractive index of each point of the

37



4.3 RAYTRACER Project “Tiefsee”

triangles is calculated by a two-dimensional sine function to get Schlieren characteristic oscil-
lation. The result of this function is multiplied by a gaussian distributed random number for a
more diffuse appearance of the vent approximation. But in the end the shape of the triangles
is too edgy to get close to a seafloor vent shape and the sine functions are too periodically to
look as diffuse as Schlieren.

Figure 18: First ideas of Schlieren approximation with sine functions

4.3.4 Multiprocessing and simplifying the Architecture

To achieve better raytracing performance, we tried to implement multithreading with Open
Multi-Processing (OpenMP). Due to difficulties with data dependencies those efforts were not
successful.
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In the last weeks of the project we had the idea to port the raytracer to Compute Unified
Device Architecture (CUDA)-C++ to enable parallel computing on a Graphics processing
units (GPUs) by Nvidia. To be able to move processing to a GPU, all data needed for the
processing has to be either moved to the GPUs memory or has to be created there. With
the previous implementation of the raytracer, mostly ignoring memory-related architecture
conditions, this simply was not possible.

This resulted in one diverging branch of the codebase called “no controller”. This branch
simplifies the previous software architecture, a model-controller architecture, by removing most
controllers. Instead of one controller class per scene object class, the methods from those
controllers are integrated into the scene objects.

Figure 19: Abstract class SceneObject

The abstract class SceneObject now has four virtual functions which have to be implemented by
the inheriting SceneObjects. Those functions were previously implemented inside the different
SceneObjectControllers and are responsible for the refracting of rays hitting those objects.

While work was continued on the main branch as well, the two versions of the raytracer
diverged. The “no controller”-version has no implementations of Rectangle3D, Triangle3D and
Polygonal.

4.4 CFD Simulation

In order to recreate the visual effects of hydrothermal vents different CFD Tools were evaluated.
Since the research group had no prior experience with CFD simulation the two most common
used tools in this area were considered first: Open-source Field Operation And Manipulation
(OpenFOAM) (The OpenFOAM Foundation Ltd, 2020) and the Analysis System (Ansys)
software (ANSYS Inc., 2020) package with the former being open-source and the latter being
a commercial tool with a free but restricted student version. Due to the open-source nature
OpenFOAM was first used to produce the first test cases of water flow. As it turned out
OpenFOAM is difficult and time consuming to use without prior knowledge in the area of
CFD which is why we switched to Ansys.
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Due to having a Graphical User interface (GUI) (in contrast to OpenFOAM) Ansys was easier
to learn and also more entry-level tutorials were available online that helped create the first
simulation cases. At first we simulated a simple two dimensional vent in order to understand
the workflow of Ansys that consists of three basic steps. The first step is creating a geometry
which defines the dimensions in which the simulation case takes place but also boundaries like
inlets, outlets and walls. In the next step the geometry needs to be converted into a mesh.
In this step different parameters influence the way the resulting mesh looks and performs;
for example, a finer mesh usually correlates with longer processing times. The third step is
setting up the simulation and performing the calculation. This includes the choice of models,
boundary conditions, used materials, etc. and eventually exporting or analysing the result of
the simulation. Often the post-processing is regarded as a separate step in the workflow of
CFD tools. As we used multiphase flow, we decided to use the volume of fluid model for our
simulations. Research in several forums showed that this might be the best model to use for
our purposes. Since we worked with different temperatures, the energy equation model had to
be activated, too. As viscous model, we decided to use k-omega. This decision was also based
on our researches.

4.4.1 First Simulation Case: Simple Vent

For our first case we created a simple two dimensional geometry with one inlet that emits
water into a body of cold water in order to get a first visualization of the behaviour of water
inlets.

After our initial tests with bigger inlets that were 2 cm across or bigger we realized that
smaller inlets yielded better visual results and created more turbulence. Since we assumed
that turbulence was needed to create Schlieren we tried to simulate smaller inlets and used a
finer mesh.

Parameter Value
Size of Geometry 1 m × 1 m
Mesh Block Size 0.01 m
Number of inlets 1
Inlet Size 0.01 m
Water temperature (cold) 4 ◦C
Water temperature (warm) 95 ◦C
Inlet Velocity 1 m

s
Time step size 0.04 s

Table 5: Parameters of the first Ansys simulation
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Figure 20: Simulation of a hot water inlet after 100 timesteps of 0.04 seconds (4 seconds)
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4.4.2 Multiple Vents

The next step was to simulate multiple vents next to each other in order to see how they
influenced each other. We started out with three vents. The first realization was that in our
simulations the warm water from multiple vents joined and flowed upwards in one big conjoined
stream as can be seen in Figure 21. We used the same parameters as described in the prior
table.

Figure 21: Simulation of three hot water inlets after 100 timesteps of 0.04 seconds (4 seconds)

We tried several methods to prevent this behaviour. The most efficient way was to put ad-
ditional inlets between the hot water inlets. These additional inlets let water with the same
temperature as the environment flow in. The exact impact of these inlets depends on their
size and their velocity.

4.4.3 Recreating the experiment

In order to create a realistic simulation in Ansys the experiment with the best visual Schlieren
effect was tried to recreate. We chose the core experiment, specifically the warm water results
in 2D. Since we had the exact dimensions of the experiment setup we set up a case with the
exact measurements. We chose to only recreate a box of 0.3 m × 0.3 m since there was no effect
at the outer areas in the experiment. Also, we realised that a consistent flow velocity wouldn’t
produce results which create enough turbulence which is why we modulated the velocity of the
different inlets with values related to the time step. Nevertheless, the velocity was still based
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on the experiment values with slight deviations. Furthermore, we used additional cold water
inlets as explained in the last section to prevent the early merge of the vents.

Parameter Value
Size of Geometry 0.3 m × 0.3 m
Mesh Block Size 0.01 m
Number of inlets 9
Inlet Size 0.02 m
Water temperature (cold) 16 ◦C
Water temperature (warm) 50 ◦C
Inlet Velocity ∼0.2 m

s
Time step size 0.04 s

Table 6: Parameters of the first Ansys simulation

Figure 22: Simulation of the last experiment after 100 timesteps of 0.04 seconds (4 seconds)

We also tried to recreate the approach of using oil which was not effective in the first test
series. Since we only did this to see if we will get the same result, we did not recreate the
whole experiment but only used a single oil inlet at the bottom of a box of cold water. This
simulation was unsuccessful, the substances didn’t mix and there was no Schlieren effect.
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We figured out that also for computed simulations using water is the best way to simulate
Schlieren.

4.4.4 3D simulation

Besides the 2D simulations we also wanted to create a 3D simulation. Naturally the additional
dimension increases the complexity.

The geometry modeling was done in Ansys SpaceClaim, which provides convenient functions.
Though, there is one flaw. To place inlets on a plane, the plane must be separated into regions.
This separation proved to be complicated in 3D. As a work around we achieved the separation
by placing bumps on the plane. But this also means that the surface is no longer even and
flat. We tried to keep the geometry as simple as possible. Therefore, the geometry is a cube
with the inlets at the bottom arranged symmetric.

Figure 23: Slice of a 3D geometry. Squares at the bottom to separate the plane

The meshing (filling the geometry with small cells, which serve as quantities for the calcula-
tions) is not straight forward. We wanted the mesh to be regular, meaning the cells are small
cubes that perfectly fill the geometry, like a grid. Despite using a method that provided this,
the cell size was irregular at the previously mentioned bumps in the cube, even tough the cells
would fit in perfectly. We were not able to find the reason for this. However, this irregularity
only occurs at the bumps, the rest of the mesh is perfectly regular. In the meshing step the
increased complexity of the 3D case brought problems. The free student license of Ansys only
allows to load 512,000 cells in the Ansys Fluent solver. At a proper cell size of 1 mm (edge
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length) this would only allow a cube geometry with an edge length of 80 mm. To use bigger
geometries we acquired an Academic Ansys License, which restricted us in that way.

The initialization with Ansys Fluent as solver does not differ much from the 2D setups. Instead
of modulating the inlet velocity to achieve a more turbulent flow, in the 3D case we slightly
modulated the inflow direction. To handle the computation of the increased complexity we used
high performance remote computer situated in the CGVR’s lab and in the Microsoft Azure
Cloud. Using General purpose Graphics processing units (GPGPUs) for the computation,
that Ansys support, did not result in a significant acceleration of the computation. We tried
a Nvidia RTX2080 Super and a Nvidia Tesla K80. At this point only limit for computations
was free disk space. The case described below for example has a size of about 150 GB and
another 150 GB for the American Standard Code for Information Interchange (ASCII) export
of the temperature.

The following 3D-case orients, like Section 4.4.3: Recreating the experiment, on the core ex-
periment.

Parameter Value
Size of Geometry 0.3 m × 0.3 m × 0.3 m
Mesh Block Size 0.01 m
Number of inlets 81
Inlet Size 0.02 m
Water temperature (cold) 16.85 ◦C
Water temperature (warm) 51.85 ◦C
Inlet Velocity 0.2 m

s
Time step size 0.033 s

Table 7: Parameters of the 3D Ansys simulation
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Figure 24: Snapshot of the animated results of the 3D CFD Simulations

4.4.5 Export

In order to use the temperature data of our simulated seafloor vents the data must be exported
in a suitable format. Ansys already supports structured temperature data export in binary or
ASCII format. Considering the downside of larger datafiles compared to the binary format,
we chose the ASCII format because it could simply be imported into our raytracing software
with the help of regular expressions. The format is pretty straight forward as it simply is a
list of every node for every time step with the corresponding x and y component (additionally
z in a 3D case) and the temperature at this point.

4.5 CFD Results in Raytracer

After finally making the decision to use CFD tools, it necessary to think about how the
information they calculate shall be used in our raytracer.

Considering what we’ve got from the export data of the different CFD tools there are different
ways these data have to be read in. In OpenFOAM exports there are just the temperatures of
each cell ordered by x and y coordinates listed. In the export files generated by Ansys there
are additionally to the temperatures the coordinates of each grid point specified. At first, the
Ansys Data-output seemed to be ordered as well. But, with rising complexity of the Ansys
simulation, the data got mixed up. Thus, the data needs to be reordered before it can be
processed further.

As the CFD data is accessible by an import to our raytracer, the question came up how this
data will be used.
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One idea was to create a vent object that consists of many small cubes with a transparent
material. The refractive index of each cube would have been depending on the CFD data for
a corresponding node. Two-dimensional as well as three-dimensional simulations could have
been realised this way. But, due to the fact that a huge amount of tiny cubes consisting of
each twelve triangle objects would be necessary, this idea was discarded because it would be
too inefficient in the current implementation of our “simple” raytracer. The more objects a
scene contains, the longer time it takes to render a single image.

Similar to the schlieren approximation with sine functions we created for 2D CFD simulation a
vent object that returns different materials depending on the point of the ray-object intersec-
tion. It consists of a rectangle, so that the CFD data, which is in shape of a rectangle too, can
be represented in the raytracer. The relative position of the intersection point on the rectangle
can be calculated which can be used to retrieve the CFD grid points of the cell that is hit
by the ray. Given these points we can compute the temperature of each intersection point by
linear interpolation. In knowledge of the temperature we can directly calculate the index of
refraction, which is returned in the material of the specific intersection point. In order to get
an even better Schlieren effect, we later changed the equation with which we calculated the
refractive indices for some simulations so that the indices would have a higher variation.

Due to correctness of optics and Snell’s law our vent object has an imaginary depth, which
means that the ray is refracted at the intersection point and as it reaches the depth it refracts
back like it would leave a 3D-object.
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Figure 25: Ansys Object in Raytracer

For 3D simulation we have a similar approach, we want to approximate the way a ray would
take in diffuse water by tracing the ray through a 3D-Grid of temperatures. In other words,
we are calculating the point where a ray leaves the 3D-Object, which is comparable to the
tracing in a 2D-object with its depth. The temperature at any point in the 3D-object can be
computed by linear interpolation similar to 2D-objects, but with one more dimension. The
tracing through the 3D-object starts at the intersection point and is followed by this iteration
until it reaches the end of the 3D-object:

1. Compute refractive index of the current point

2. Follow ray in refractive direction for a specific length.

48



4.5 CFD RESULTS IN RAYTRACER Project “Tiefsee”

The shorter this length is the more accurate the approximation of tracing a ray through diffuse
water will be.

Figure 26: AnsysObject3D in Raytracer

So this is how the Ansys 3D attempt works at least in theory, but in our pipeline the data
exported from Ansys needs to be processed before it comes to raytracing.

As the exported mesh is distorted at distances between its nodes and there are missing nodes
at some places, the mesh is required to be reconstructed. Furthermore, nodes at some places
appear to have zero as temperature value for some reason. Therefore, we apply a repair
algorithm to the data, which sets the temperature of nodes that are zero to the mean value of
the surrounding nodes. This happens iterative, so that repaired nodes influence other nodes
that don’t have neighbours with a temperature higher than zero, until all nodes are repaired.
One more option that can be applied to the 3D-grid which gets raytraced is the reduction
of grid resolution. This can be very useful to lower the rendering time of frames with a
AnsysObject3D.

The following picture is an output frame of the AnsysObject3D.
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Figure 27: AnsysObject3D output

4.6 Run-Time Tests

Raytracing is a computationally intensive process. In this chapter, we describe how long it
approximately takes to render a frame with our raytracer. The calculation time depends on
how many objects are placed in a scene and on the amount of pixels to be rendered.
Due to the fact that during our project work the raytracer was not optimized regarding the
run-time, rendering a scene may take a very long time. Some tests have shown how long the
rendering process takes in dependence of the objects of the rendered scene. All tests were done
on a laptop with a i7-8550U (4x 1,8 - 4,0GHz). For each test, one object was placed in the
middle of a scene, covering one third of a frame with the resolution 1280x720 (720p).
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SceneObject Time Note
Rectangle 2s -
Triangle 2s -
Sphere 8s -
Image 4s -
AnsysObject 4m 6s consisting of 90000 (300x300) temperature points
AnsysMultObject 1h 20m consisting of 9 AnsysObjects, each with 90000 temperature points
Ansys3DObject 2h 16m 11.4 million (225x225x225) temperature points

Table 8: results of the raytracer run-time test

It is to be noticed that the calculation time of the AnsysMultObject is already optimized by
not checking each AnsysObject for intersection, but only checking the foremost one. Only if it
is intersected by a ray, the next AnsysObject will be checked for intersection, too.

Because of the very long time that it takes to render a scene with an Ansys3DObject, certain
optimizations were made to reduce this time. Otherwise, it would take several days to create a
short simulaton video containing an Ansys3DObject. For example, the resolution of the three
dimensional temperature points was reduced from 11.4 million to 185000 temperature points.
Another aspect is to use a small depth because the deeper an object is, the more steps it takes
for the ray to leave the object after intersection.

4.7 Evaluation

Many of the created Ansys simulations did not bring the expected result when importing them
into our raytracer. The result always depends on how small-meshed a simulation was set. But
it also depends on the width and the height the Ansys object was given in the raytracer and
also where in the scene it was set, near to the camera or far away from it. These aspects have
a big effect on how the simulated Schlieren may look like after the raytracing process. After a
few tries we found a good way to import Ansys simulations with fitting parameters.

Since the idea of this subproject was to provide simulations which may be used as input for
the detection software, which can be compared with the experiment results, we raytraced the
Ansys simulation described in in front of the same background used in the experiment. The
simulation looks similar, even though we could not recreate the exact same behaviour, as
explained in Section 3.5.2: Comparison to simulation

The Schlieren effect in our simulation can be seen due to the black mesh in the background.
The detection software noticed these Schlieren movements, but because of the big white areas
where the various refracting indices have no impact, the Schlieren effect was only noticed along
the black grid.
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(a) Simulation (b) Detektion

Figure 28: Comparison of detection and simulation

That made us realize that such grids are not well usable for computed simulations. We ray-
traced the same simulation in front of an image of the deep sea and again used it as input for
the detection software.

(a) Simulation (b) Detection

Figure 29: Detection result of simulated vent in front of deep sea background image

4.8 Conclusion and Outlook

After finishing the project we can conclude that it was the right choice to build a new raytracer.
That made it possible to adjust the rendering process for our needs and to easily create new
classes, for example for OpenFOAM or Ansys Fluent objects, when needed. Furthermore,
the total understanding of the whole program was often useful when it came to problems.
Nevertheless, there is still much to do to improve the raytracer and the simulations.

The raytracer brings everything needed to render a simulation video considering imported
CFD data. Only the time it takes to render a simple scene can be very long, depending on
the amount and size of the scene objects and on the amount of the nodes of an Ansys object.
Therefore, the efficiency brings an opportunity to further improve the raytracer. One method
would be to render the frames via graphic card. Another method we already started to use at
the end of our project would be multithreading.
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Due to the fact we had no prior knowledge about the physical behaviour of fluids in our group,
it took very much time to try out different adjustments to get good results when it came to
work with the CFD tools. Because of the long time it takes to calculate a solution in Ansys,
often hours were spent waiting for a solution which in spite of new adjustments was little or
not at all better than the prior one. Therefore, though we now can provide simulations of a
diffuse seafloor vents, they bring the opportunity to be improved by further work. Especially
the selection of the models, which we chose based on our research, may be enhanced by people
with a better understanding of the physical basics. Our raytracer might for example be used
for future projects to import enhanced CDF data. The possibilities of Ansys Fluent and other
CFD tools are huge, and with enough time and a better physical knowledge the simulation can
surely become even more realistic.
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5 Optical detection

5.1 Detection introduction

This section describes the process of developing an algorithm, that detects Schlieren objects
in a given video or live stream source. Responsible for this section are the following students:
Arkadiusz Guzinski, Timo Hoheisel, Kilian Lüdemann, Niklas Masemann, Dennis Riemer.

Within the project group, this algorithm is first used to evaluate the results from both the
experiment group and the simulation group, and secondly it is evaluated by previous mentioned
groups. This way all the students participating in this project could cooperate and work
together at some point.

As a little overview, we will begin by explaining how we got started. Continuing with our
First approach and our Learnings while experimenting with it. With this new knowledge we
searched for alternatives and found a better suited algorithm for our application. Following
this, we break down our Algorithm and explain how the final implementation works.

To verify our work, in section Results we compare our results with the different sources of ma-
terial we were presented with, including the material from the other two subgroups experiment
and simulation. Followed by that, in section Evaluation we evaluated our algorithm and how
we handled the task we were given.

5.2 First approach

Before working with actual videos, we decided to start with a predetermined sequence of single
pictures. Our first approach was to find Schlieren objects by running an optical flow PIV-
algorithm (Python Particle image velocimetry). This algorithm gave us a velocity field between
2 frames. We then tried to extract the regions, where Schlieren objects had a significant impact
in the velocity field. After successfully running this program on a sequence of frames, we then
wanted to convert it to work on videos instead. The live stream functionality were planned to
be implemented in the end.

5.2.1 Python Particle image velocimetry

The Python library for Particle Image Velocimetry (PyPIV) is an optical-flow algorithm for
calculating a velocity field between 2 frames. It does so, by partially taking subframes out of
each picture like a grid (windowing). The brightness field in the same sub frame between two
frames is then correlated.

The position of the correlation peak gives the most likely shift of the brightness field from one
frame to the next. This peak is fitted with sub pixel accuracy. The velocity field is calculated
by dividing this position by the time between the frames. The resolution of the velocity
field depends on the size and shift of the subframes. (This algorithm was developed by the
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department of geophysics at Georg-August-University Göttingen (Ruebsam and Luedemann,
2019).

5.2.2 Learnings

At first the Python library for Particle Image Velocimetry (PyPIV) algorithm was a good
choice for us to get into the project and understand the given context. But for the detection
of underwater Schlieren objects this algorithm turned out not to be the best option. There
were to many artifacts produced by the general dark environment (deep sea) and shadows on
the foreground. The movement of the ROV was also at some point to great for the algorithm.
We tried to come up with possible solutions for these problems, but we figured out it would
become increasingly more difficult with this approach. In the following, these problems are
further described.

5.2.3 Attempts of adaptation

Deep sea as background As mentioned, the PyPIV did not only detect Schlieren objects,
but also had its problems with the deep sea as background. We tried to use the advantage of
the darkness of the deep sea and applied Open Source Computer Vision Library (OpenCV)
threshold functions to simply remove it.

Therefore we used simple thresholding with a “to zero” method. This removed the deep sea
and carved out shadow-regions, which caused more problems, as it solved. Shadows under
corals for example left dots, which then were interpreted as shift between pictures.

Furthermore the overall brightness in the deep sea varied too much, so that we could not choose
the perfect threshold and changed to the OpenCV function otsu’s binarization (OpenCV-
Python-Tutorials, 2013d), which calculates a threshold between 2 peaks in a brightness his-
togram. This improved the results, but only for examples where two peaks existed. For very
dark examples, it did not work at all, which made the general use of it impractical.

Next we tried to find a contour which should have separated the deep sea from the static
foreground. Because of the nature of the objects in the foreground, which were mostly rocks,
corals and bacteria, there were a lot of contours and edges. Due to this, the calculation time
was very long and no contiguous contour or edge to the deep sea could be usefully calculated.
The functions used for this were the openCV-functions for calculating contours, canny edge
detection and image gradient computation (OpenCV-Python-Tutorials, 2013c).

Thereafter we tried to use the characteristic color of the deep sea to remove it, by applying a
backprojection function given by openCV (OpenCV-Python-Tutorials, 2013a). This caused 2
problems. On one hand, we had to give an example of color distribution, which were problem-
atic, because the bluish tint of the videos and so the deep sea background varied. On the other
hand the tint made a clear color separation of the deep sea and the foreground impossible.

After that, we tried to remove video fragments, by applying image smoothing functions by
OpenCV, which resulted in only a small difference. Finally, because of the overall dark theme
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of the deep sea, we applied the contrast limited adaptive histogram equalization function
Contrast limited Adaptive histogram equalization (CLAHE) by openCV (OpenCV-Python-
Tutorials, 2013b). It is used to increase the contrast in an adaptive way, which helps especially
in the border regions to the deep sea background. Because of it’s adaptability, it does not
overexpose the very dark regions and by that avoids producing new sources of error. This
improved almost every aforementioned function and we came to the conclusion, that in our
case, the clahe function in combination with a simple thresholding “to zero” method worked
best for the moment. The effect of the CLAHE function can be seen below.

(a) Original image (b) Applied CLAHE

Figure 30: This is an example of how the CLAHE function brightens the dark areas

Shadows The PyPIV algorithm used gray scale images for its computation. Which is why
shadows caused by the light sources of the ROV affected the computation. The light source
seemed to be placed beside the camera. This caused the shadows thrown by the Schlieren
objects, to flicker on the other side and therefore adding more detected spots.

We came to the conclusion, that a light source shaped like a ring around the camera would
throw the shadows behind the Schlieren objects, increasing their probability of being detected
by the Particle Image Velocimetry (PIV) algorithm.

Camera movement Of course there is a general shift between two frames, when the point
of view moves through an environment. We first thought of removing an adaptive value
constantly from the result of the computation. After that, a threshold was applied, to leave
only the regions, where Schlieren objects had an impact. This is not a part of the actual
algorithm.

Anomalies We found out, that the PyPIV algorithm and some filters like the simple threshold
caused noise in areas, where no shift were expected. To fix this, we ran a second computation
with the second and a third frame and simply compared the result areas. This removed the
noise and some outlier.
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5.2.4 Reconsiderations

As mentioned before, we came to the conclusion, that the PyPIV algorithm was not the best
choice to work with. So in search for alternatives, we decided that the Horn-Schunck algorithm
is probably better suited for our problem (Bradley Atcheson, P, and Ihrke, 2008). Examining
this in practice proved the previous statement to be correct.

5.3 Algorithm

For the implementation of the algorithm and the graphical user interface, we used python. A
pseudo code visualisation can be found in section Sequence diagram.

5.3.1 Software-pipeline

The following is a software-pipeline of the below described algorithm.

video processing

live stream processing

video preparation

live stream preparation

pre-processing core algorithm post-processing

live stream results
visualisation

video results to result video
& bookmarks

Figure 31: Software-pipeline for our algorithm

5.3.2 Preparation

First, we distinguish between preparation of videos and live streams. For a video, we have no
time limits with the computation. With the live stream however, we must be either fast, or
reduce the rate of calculations per frames, to achieve real time evaluation.

Video To get the images from the video for the algorithm, we used the functions which are
given by OpenCV. When beginning the computation, the video is loaded and the start frame
is set. This is important when we have more than one video decoding process for higher core
counts. After that the video decoding process will take the first three frames of the video
and stores them temporary into variables. When the three frames are loaded, a triple of
the frame number of the first frame, the first frame and the third frame is put into a python
multiprocessing queue. We’re using the first and third frame, to get enough difference to detect,
assuming a 25 FPS video. Whilst the queue expands, the frames of the queue members are
always spaced by one, so all even and all odd frames are processed together. This functionality
can be seen in section Sequence diagram.
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Live stream When using a camera as input, the same detection algorithm is used. However
only a few frames are used for detection. Then the result overlay is computed and used on
every frame until the next result is available. For a more detailed description of the live stream
processing branch, see section Sequence diagram.

5.3.3 Pre-processing

The pre-processing area of the main computation starts with applying the CLAHE function
to both the first and the second frame, of each computation task, which can be seen at picture
two of Figure 38 to Figure 39. This seemed to improve the performance of the Horn-Schunck
algorithm.

Then we use a very simple way to detect movement between the two frames, by using the
OpenCV function template matching (OpenCV-Python-Tutorials, 2013e). The idea behind
this is to leave only the Schlieren effects between the two cutouts. A rectangle with a 10x10
padding is taken from the first frame. This is then matched within the second frame and gives
fitting cutouts. If no matching area is found within the second frame, the next section will
be skipped, saving computation time. For example this is the case, if only deep sea is in the
view.

5.3.4 Core algorithm: Horn-Schunck

We now take our two fitting cut-outs and apply the Horn-Schunck algorithm to them. This
calculates a velocity field between the frames. It starts with the assumption of no movement
between the frames. If there is movement, the algorithm iteratively approaches the correct
velocity field. We decided to use 8 iterations, because the result seemed to not significantly
improve with more iterations and therefore we could save computation time. Horn-Schunck
also applies a smoothing value alpha, where we chose 2. This seemed to work as desired and
therefore no further adjustments were made. This results in two arrays, for the horizontal and
the vertical velocity per pixel. By comparing these with the results from the PyPIV, we came
to the conclusion, that the Horn-Schunck algorithm seemed to not have the same complication
with the deep sea background and also less complications with shadows. The exact functionality
can be seen in the original Horn-Schunck-paper (Horn and Schunck, 1981).

5.3.5 Post-processing

Thereafter a threshold is applied, to remove noise and small general movement. This threshold
was chosen to be five plus an adaptive value, which arises from the shift between the two cut-
outs. We found that bigger shifts between the frames resulted in not only shifts, but also
zooming and perspective change. To take that into account, we increased the threshold by the
sum of the horizontal and the vertical shift. This implies, that the algorithm is more accurate,
when the movement of the point of view is low.
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We found, that the algorithm produces anomalies on the edges, which may be caused by the
aforementioned movement-detection function. To fix that, we simply cut the edges off by
5x5.

Clustering The resulting arrays are now distributions of points in regions of interest. These
points need to be clustered for a good visualisation. We found, that established cluster algo-
rithms would not work, because we had too many, not very separated clusters. It was more like
we had one cluster, which had to be summed up and some outliers, which had to be removed.
This would have been possible by declaring a maximum distance between points and therefore
ignoring outliers, but we found no suitable and sufficiently fast implementation.

Groups To reduce the amount of memory-space that is used at runtime and accelerate the
post processing, we decided to cluster the frame into smaller blocks, we called groups. To
determine the size of the groups, we use the greatest common divisor of the frames height
and width. In case the groups would be to big, a loop tries to figure out a divisor for the
greatest common divisor in range from 30 to 50. After the group size has been calculated, all
group elements are binarized by the trashhold of 0. Finally, the values are added to a number
representing the group. Thereafter we defined an average function of how great the represent
of the group needs to be as to count as a hit and all values under this average will be set to
zero. The resulting 1d-array is now applied as a mask to another 1d-array consisting of original
result values, which are again summed up to representatives. In Figure 38 to Figure 39 picture
3, the resulting image of the groups are shown, where a more white color represents a higher
density of high values.

5.3.6 Visualisation

When a video part is ready to generate, every value of the grouped image will be replaced with
a placeholder value. The threshold where the different values are replaced is calculated with
the average of all groups. A higher placeholder defines stronger Schlieren effects. After the
placeholders are set, the overlay image is converted to BGRA color space and the placeholders
will be replaced with their actual color. To use the overlay image, we needed to convert it
to its original shape. To do that, the pixel that represent the group are replicated by the
greatest common divisor that is used in the group’s function. While the lost pixel at the edge
are padded with zeros. In the end the overlay image is set on top of the original image and is
converted to BGR color space for better handling the video creation. In Figure 38 to Figure 39
picture 4 the final result is shown.
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5.3.7 Graphical user interface

Figure 32: Image of the GUI

The GUI is one way to use our algorithm. It is written in python 3, using the Qt-framework1.
In the upper left corner, an input can be chosen. After choosing such source, a preview is
shown below. When a video is chosen for example, you maybe do not want to process all of it
at once. Therefore in the upper right corner, you can set a begin- and an end time, between
which the algorithm will calculate the result. If desired, you can queue up more than one
video. For the cli preferring user, the algorithm can also be started without gui.

At the time of writing, the livestream feature is only available per command line. This is
likely to be integrated into the UI soon. Same goes for video processing via command line
interface.

5.3.8 Bookmarks

In order to improve the ability to keep track of the results, we decided to implement a book-
marks function. It generates a list of tuples, which indicates the start and end of an interval

1tested with Python 3.6 & 3.7, using PySide2
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of frames with Schlieren objects. With this function implemented, the user is able to check
the results of our program on another way and can also save the result data somewhere else.
So to speak, as a safety measure, if the result video gets lost or corrupted.

5.3.9 Features

As we ran the algorithm, we found out, that we had not only detected direct vent and Schlieren
objects, but also created a particle tracker. This seemed to be a problem at first, but came
out as a feature. This effect can be seen below.

(a) Original image (b) Results

Figure 33: A visualisation of the particle tracker feature

5.3.10 Compare core algorithms

We can now compare the PyPIV and the Horn-Schunck algorithm. As mentioned in section
Learnings, the PyPIV teached us, that in the deep sea, it is complicated to work with the
varying brightness and the absence of other colors than blue. For both our algorithms it is
important to generously illuminate the regions of interest. We came to the conclusion, that
because of the different functionality of the Horn-Schunck algorithm, it were not as much
affected by the effects of the deep sea background as the PyPIV. Therefore we were able to get
rid of this problem rather simply.

Performance comparison In order to increase the accuracy, after a first calculation (called
“directPIV”), another step is run through (called “adaptivePIV”). This can be extended by
more such steps. Each “adaptivePIV” step increases the computation time exponentionally.
For satisfactory results, at least one “adaptivePIV” had to be run. Hence, the PyPIV is not
suited for our application.
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Figure 34: Performance diagram for FullHD resolution images with different PyPIV configu-
rations

In order to increase the accuracy, the Horn-Schunck algorithm is run in several iterations.
With increased iterations, the computation time does not increase as fast as the PIV does.
As mentioned, we found out, that 8 iterations would be enough to compute satisfactory re-
sults. More iterations would increase the computation time without significantly increasing
the accuracy.
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Figure 35: Performance diagram for FullHD resolution images with different Horn-Schunck
configurations

These calculation times were measured, as the algorithms were run on an AMD Ryzen 7
2700X.
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Figure 36: An accuracy comparison between PyPIV and Horn-Schunk

63



5.3 ALGORITHM Project “Tiefsee”

This diagram visualizes how the accuracy improves with more iterations. As can be seen in the
diagram, the Horn-Schunk algorithm reaches a preferable accuracy in less computation time
than the PyPIV.

5.3.11 Sequence diagram

The following is a sequence diagram of the complete algorithm. It is branched into the pro-
cessing of a video and a live stream.

extract all frames

pair each frame with
its respective

post-successor

apply detection algorithm

color result

place result above
original first frame of pair

append to result-video

generate bookmarks for
periods of frames with hits

detection algorithm

find block from first
in second frame

apply clahe function

cut off edges

find groups of
resulting points

apply Horn-Schunck
algorithm to pair

of frames

apply threshold to result

convert to gray scale

Open live medium

read first 2 frames

apply detection algorithm

prepare an overlay of
colored rectangles,
showing the results

read another frame

start detection algorithm
for last 2 frames in background thread

start detection algorithm
for last 2 frames in background thread

update overlay with new result

apply overlay on current frame

show frame

live stream video processing

result not ready

result ready

live medium open

live medium not open or ’q’ pressed

frames left

all done

not all appended

all results appended

Figure 37: Sequence diagram for our algorithm
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This way the original live stream is always visible in its current state, with the last computed
results as an overlay. The downside is, that the results shown are actually delayed, and therefore
a bit older than the visible picture. Currently this delay can be around 3 seconds with FullHD
resolution.

5.3.12 Processing chain

The processing chain consists of 8 steps. The most important are shown below.
The computation starts with (A) the original image.
After that, the image is converted to grayscale and a CLAHE function is applied (B).
The images are paired with their post-succesor and a block-matching function is used to get
fitting cutouts between the two frames. This is thought to roughly get rid of a general shift
between the frames.
These fitting cutouts are given to the Horn-Schunck algorithm, which provides us with a
velocity field between the cutouts.
To the velocity field, a threshold is applied, which leaves us with a “point cloud”.
This “point cloud” is then grouped into squares (C), which represent regions of interest (This
function is explained in Section 5.3.5).
In the end the regions of interest are coloured and presented as an overlay over the original
image (D).

(a) Original image (b) Applied CLAHE

(c) Grouping (d) Results

Figure 38: Processing chain for experimental video
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(a) Original image (b) Applied CLAHE

(c) Grouping (d) Results

Figure 39: Processing chain for deep sea video

5.4 Results

In the following section we compare our results with the different sources of material which we
were getting.

5.4.1 Experiment

The subgroup experiment provided us with a varying source of artificially created Schlieren
objects. In the beginning, we used the PyPIV for evaluating this material, because the exchange
with the Horn-Schunck algorithm came rather late. This resulted in very inaccurate results for
detected regions. The PyPIV detected some Schlieren, but was not suited for differentiating
between Schlieren objects and other effects, like interference caused by moving water surface
and reflecting surfaces withing the aquarium.

Hence, the change to the Horn-Schunck algorithm improved the results significantly. There-
after, our ability to evaluate the quality of experiment’s artificially created Schlieren objects
enhanced. For this reason, we came to the conclusion, that the Schlieren effects were prefer-
ably, when farther away from the background and closer to the camera. Furthermore, the last
experiment contained less sources of interference, which improved the results.
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5.4.2 Simulation

Based on the nearly perfect conditions, like a static background in the simulations, we had the
possibility to verify our algorithm on Schlieren object-only videos. The results satisfied our
expectations and verified the basic functionality of our algorithm. Regardless, it showed us
that a video that contains only Schlieren objects is not sufficient for our field of application,
because it would be extremely difficult for us to create comparable circumstances in the deep
sea. Nevertheless, to bring the deep sea circumstances closer to the very good simulation
results, we propose that adjusting the illumination of the Schlieren objects (as mentioned in
the section Shadows) by a ring light around the camera, or setting the viewpoint to a higher
angle, which should result in a more static background, could lead to better results.

5.4.3 Deep sea

As mentioned before, the change to the Horn-Schunck algorithm improved the results for the
deep sea videos as well. The complications of deep sea photographs were described within
section Attempts of adaptation and Compare core algorithms. We found out, that our algo-
rithm performs the best, when the region of interest is generously illuminated. The area of
Schlieren objects is even better detected, when there are no microorganisms floating around.
Nevertheless, we value the feature of tracking particles, which consists of bacteria and minerals.
Furthermore the effects were detected more accurately, where there was a static background
behind the Schlieren objects. As mentioned before, our algorithm was proven to be more
accurate, when the ROV movement was exiguous.

Superior results were computed, when all above mentioned conditions were fulfilled.

5.5 Evaluation

To evaluate our algorithm, we can most likely take the experiment videos as ground truth data.
When computing the results for these, we evaluate our algorithm as meeting our expectations.
However, when expanding our tests into the deep sea videos, we discovered aggravating cir-
cumstances, which turned out to be handled mostly well. Nevertheless, we could not solve the
problem with motion-based perspective change and zooming.

The decision to use python turned out to be suitable for the most purposes within this project.
Nonetheless, at some points python did not offer us enough range of functionality. This caused
problems with multi-processing and multi-threading in particular. Hence, the alternative of
C++ as programming language should be considered.

Our choice for Horn-Schunck as optical flow algorithm turned out to work in most cases, but
it is worth considering further alternatives. Lastly, the openCV library was very valuable for
us.
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5.6 Conclusion

The goal of this work was to develop an algorithm to automatically detect and visualize
Schlieren objects on underwater photographs.

During the development we encountered obstacles, which were both technical and location
related, like varying brightness or areas with a higher amount of floating microorganisms.
The requirement to be able to process live streams and at the same time detect and visualize
Schlieren objects as accurately as possible was one of the major technical challenges. The
common clustering algorithms for image processing, were excluded from a temporal perspective,
for example.

A further challenge was the lighting, which caused strong shadows, due to the recording at
depths where no daylight reaches and the resulting one-sided illumination by the ROV. Another
source of interference consisted of the large number of microorganisms or minerals, whose
movements caused faulty detection, which afterwards came out as a feature, because marine
biology is interested in the origin and movement of those. Other movements, such as those of
the camera, could be filtered out much better by means of template matching on the respective
image pairs. Apart from that, when working with artificially created Schlieren objects by the
experiment and the simulation group, we found out, that our algorithm worked rather great
and were able to detect almost every region of interest. However, because the goal was to
detect Schlieren objects in deep sea regions, we encountered aforementioned complications.

These complications cause, that the detection and the associated visualization of Schlieren
objects in deep sea photographs is too inaccurate to provide a desired result without further
control, but it could be used in conjunction with manual detection to highlight or further
narrow down interesting areas of the image. Nevertheless, we believe that the program offers
great potential for further development and is already a good tool for enhancing the material
to be sifted and thus facilitating further processing.
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6 Conclusion and Future Work

As mentioned in the separate sections, we have achieved a lot during the project work, though
there are possibilities to improve the result of each subgroup. While the detection software
worked very well for the experiment results as well as for the simulation results, there were
complications when detecting Schlieren in real life deep sea pictures. That shows that on
the one hand, the basic goals for each subgroup have been achieved. The simulation group,
and the experiment group were able to provide pictures and videos of Schlieren which were
detected by the detection software. On the other hand it is necessary to further improve the
Schlieren recreations by experiment and by simulation so that they become more similar with
real deep sea vents including the complications they caused. Also, the detection software has
to be improved to deal with several disruptive factors so that real deep sea Schlieren will be
detected without any problems.

All in all, this project brings the opportunity to be further pursued and to improve the results
we could already achieve.
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